Laptops and mobile phones, among other devices, could be charged or powered indoors, away from direct sunlight using dye-sensitized solar cells.
ARC Centre of Excellence in Exciton Science09.03.20
Dye-sensitized solar cells used in low-light conditions could perform more consistently thanks to improved understanding of the role additives play in optimizing electrolytes.
Laptops and mobile phones, among other devices, could be charged or powered indoors, away from direct sunlight, using dye-sensitized solar cells (DSCs), which have achieved efficiencies of up to 34% at 1000 lux from a fluorescent lamp.
Copper-based electrolytes containing various combinations of additives have been used to achieve these efficiencies, with varying results to date.
Interaction of these additives with the copper species in the electrolyte has been a concern over the last few years, and progress has been undermined by a lack of understanding about the true effect of the different additives.
Now, research funded by the Australian Center for Advanced Photovoltaics (ACAP) and supported by the ARC Center of Excellence in Exciton Science, has demonstrated th
Continue reading this story and get 24/7 access to The Independent Global Source for the Flexible and Printed Electronics Industry. for FREE
Stay ahead of the fast growing field of flexible and printed electronics, an emerging industry that promises to revolutionize the methods in which electronic components and systems are manufactured. Flexible and printed electronics covers smart packaging and labels, sensors and wearables, solar cells, displays and lighting, batteries, medical devices, military equipment, and much more.
FREE SUBSCRIPTION
Already a subscriber? Login