A team of researchers at Texas A&M University has developed a new class of biomaterial inks that mimic native characteristics of highly conductive human tissue, much like skin, which are essential for the ink to be used in 3D printing.
This biomaterial ink leverages a new class of 2D nanomaterials known as molybdenum disulfide (MoS2). The thin-layered structure of MoS2 contains defect centers to make it chemically active and, combined with modified gelatin to obtain a flexible hydrogel, comparable to the structure of Jell-O.
“The impact of this work is far-reaching in 3D printing,” said Akhilesh Gaharwar, associate professor in the Department of Bi
Continue reading this story and get 24/7 access to Printed Electronics Now for FREE
Stay ahead of the fast growing field of flexible and printed electronics, an emerging industry that promises to revolutionize the methods in which electronic components and systems are manufactured. Flexible and printed electronics covers smart packaging and labels, sensors and wearables, solar cells, displays and lighting, batteries, medical devices, military equipment, and much more.
FREE SUBSCRIPTION